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Electric nanoimprint to oxide glass containing alkali metal ions 
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Fine patterns were electrically imprinted onto an alkali ion containing glass using a two-dimensional mold with 700 nm 
period by applying a DC voltage of 120 V for 60 s at 100 °C below the glass transition temperature (Tg = 550 °C) under 
the pressure of 0.02 or 3 MPa. 
 
 

Electrical nanoimprint is known as the low temperature process for 
the formation of fine structures on alkali ion containing glasses below 
their glass transition temperatures [1−3]. Recently, we reported the 
alkali ion diffusion from anode side to cathode side in a soda-lime 
glass only in the contacted area of the mold fine structure [3]. This 
paper reveals the correlation between the alkali diffusion and the fine 
structure formation.  

Fig. 1 shows the imprint time dependences of current and the 
variations of glass surfaces after the electrical nanoimprint under the 
pressures of 3 MPa and 0.02 MPa . Each photograph was obtained by 
interrupting the applied voltage at the predetermined point. As 
recognized from the diffraction image of illuminated visible light, the 
patterned area expanded gradually, and the uniform transfer of fine 
pattern was achieved when the total charge exceeded 20 mC. 
Therefore, we can conclude that the imprint pressure is not so 
important for the electrical nanoimprint.  

Fig. 2 denotes the model to explain the fine pattern transfer by the 
electrical nanoimprint. The right hand in the figure exemplifies the 
flatness of mold and glass plate. The warpage of the latter, which is 
150 nm in vertical interval, is much larger than the hole depth formed 
by the imprint. The imprint pressure of 0.02 MPa should be insufficient 

to achieve the perfect contact between mold and glass plate even if at 
450 °C. We considered that the mold should contact to the glass plate 
partially at the initial stage of DC voltage application. The sodium 
deficient layer with negative charge is formed below the mold 
contacted area during the voltage application.  

Figure 1. Time dependences of applied voltage and current (upper), and 
electrically imprinted glass surfaces (lower) at 450°C under the pressure 
of (a) 3 MPa and (b) 0.02 MPa. The specimen size is 10×10×1 mm. 

 

Figure 2. (a) Model of fine pattern formation by electrical nanoimprint. (b) 
and (c) are surface curvatures of mold substrate and soda-lime glass 
plate used for the imprint, respectively. 

(a) 

(b)     (c) 

Figure 3. AFM views of glass plates imprinted under (a) 3 MPa and (b) 
0.02 MPa, before and after KOH etching. Total charge estimated after 
electric imprint is 20.8 mC for (a) and 22.8 mC for (b). 
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Figure 4. Experimental setup of electrical nanoimprint. 
 
 

Simultaneously, an electrostatic attractive force should be generated 
between the deficient layer and the mold. Such phenomena have 
been reported in the studies on anodic bonding used for the 
fabrication of MEMS [4]. The electrostatic attractive force induces the 
penetration of mold pillar to the sodium deficient area, and the next 
neighbor pillars contact to the glass surface, forming another sodium 
deficient area. After the repetition of these steps, the fine pattern 
transfer proceeds in the entire area of the plate under low imprint 
pressure.  

The alkali deficient layer, which was estimated to be 400 nm in 
depth using a ToF-SIMS, can be selectively etched in a KOH solution.  
Fig. 3 shows the AFM views before and after the KOH etching of the 
electrically imprinted glass plates. No pressure dependence was 
recognized in the surface morphologies before and after the etching. 
Therefore, the electrical nanoimprint is advantageous process for the 
fine pattern transfer onto alkali ion containing glasses below Tg. 

Fig. 4 exemplifies the experimental setup of electrical nanoimprint. A 
carbon coated SiO2 mold with two-dimensional pillar with 700 nm 
period was contacted to a soda-lime glass (Tg = 550 °C) on the 
cathode stage at 450 °C in N2, and then a positive DC voltage of 120 
V was applied to the mold for 60 s. 
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